Algolia Announces Availability of Artificial Intelligence-Based Recommendation API, Algolia Recommend

Algolia Recommend Extends the Capabilities of Algolia's API Platform to Compose the Experiences of Tomorrow's Applications

[the_ad_placement id="news-banner-top"]

SAN FRANCISCO, June 30, 2021 (GLOBE NEWSWIRE) — Algolia, the leading API Platform for Dynamic Experiences, today announced the general availability of Algolia Recommend, a high-performing, Artificial Intelligence (AI)-optimized API that accelerates the creation and implementation of product recommendations across digital touchpoints.

”We’ve had several hundred companies use Algolia Recommend during our two-month beta period. Some companies, such as The Vegan Kind, went into production with Algolia Recommend within days,” said Julien Lemoine, CTO, Algolia. “The beta program has been a success, both in terms of the number of beta users and their successful use of the new API to easily ‘switch on’ the new recommendation capabilities very quickly within their own environments.”

For The Vegan Kind, a provider of subscription boxes of vegan goodies, it is all about helping customers make the right choices by providing them with great alternatives and suggestions as they browse. After deploying Algolia Recommend, The Vegan Kind was able to surface recommended products associated with the items visualized, increasing the opportunity for shopping cart expansion.

Algolia Recommend surfaces in milliseconds the most relevant recommendations, offers, or suggestions for a shopper using machine learning models that collect data from two sources: shopper behavior (the shoppers’ actions across a website or app, including previous purchases) and product data (all product attributes contained in the product catalog, including product, description, availability, and price).

Julien Lemoine added: “The Algolia Recommend API provides unique flexibility and more programmable control, which enables developers to filter, merchandise, rank, and contextualize recommendations to better fit their business goals. By adding this to our Algolia Search API, our customers now have access to a single, unified platform that leverages the same product catalog, merchandising logic, and analytics across search, navigation, and recommendations.”

Algolia Recommend’s API-first approach, front-end frameworks, and advanced documentation ensure that it is simple to integrate and highly flexible. HiCart, the creators of a user-friendly, Lebanese marketplace for their members to enjoy a seamless experience, was struggling to offer recommendations with their current implementation. With as little as six lines of code, HiCart was able to implement Algolia Recommend and go into production in four days. Now, when a shopper searches for a specific item, additional alternatives are surfaced as well, meaning the customer has more choices, a more satisfying experience, and less chance of abandoning their shopping cart.

Algolia Recommend significantly increases the average order value (AOV) through shopping cart expansion and customer satisfaction in online stores. By using Algolia Recommend, businesses can more easily increase their average order value with a smart “related product” capability that improves their ability to merchandise a broader range of items. This, in turn, enables them to surface highly relevant recommendations in the moment, demonstrating a richer understanding of their customers and earning greater loyalty in the process.

Julien Lemoine continued: “We are seeing companies pleased with their initial implementation – they are already seeing how Algolia Recommend can improve their customers’ experience, making it more personal and relevant. Eventually, product managers will be able to fine-tune and iterate recommendations on the fly. This means they will be able to quickly offer recommendations associated with the items that their shoppers are seeking and adjust the product recommendations across every part of the shopping journey.”

Available immediately, Algolia Recommend comprises two of the more popular machine learning models that automatically deliver tailored recommendations:

  • Related Products: This recommendation model enables retailers to increase conversions and orders by analyzing items shoppers interact with (e.g. clicks, adds to a cart, and/or purchases) during their sessions and suggesting similar products from this analysis.
  • Frequently Bought Together: This recommendation model increases AOV by upselling complementary items on the product page or shopping cart page based on what other shoppers have purchased with that same item during a single shopping session.

For more information or to try Algolia Recommend, click here.

About Algolia
Algolia provides an API platform for Dynamic Experiences that enables organizations to predict intent and deliver results. Algolia achieves this with an API-first approach that allows developers and business teams to surface relevant content when wanted — satisfying the demand for instant gratification — and building and optimizing online experiences that enhance online engagement, increase conversion rates, and enrich lifetime value to generate profitable growth. More than 10,000 companies including Under Armour, Lacoste, Birchbox, Stripe, Slack, Medium, and Zendesk rely on Algolia to manage over 1.5 trillion search queries a year. Algolia is headquartered in San Francisco with offices in Paris, London, Tokyo, New York, and Atlanta. To learn more, visit www.algolia.com.

Contact:
Shannon Campbell
OffleashPR for Algolia
algolia@offleashpr.com

Author Information

As a detail-oriented researcher, Sherril is expert at discovering, gathering and compiling industry and market data to create clear, actionable market and competitive intelligence. With deep experience in market analysis and segmentation she is a consummate collaborator with strong communication skills adept at supporting and forming relationships with cross-functional teams in all levels of organizations.

She brings more than 20 years of experience in technology research and marketing; prior to her current role, she was a Research Analyst at Omdia, authoring market and ecosystem reports on Artificial Intelligence, Robotics, and User Interface technologies. Sherril was previously Manager of Market Research at Intrado Life and Safety, providing competitive analysis and intelligence, business development support, and analyst relations.

Sherril holds a Master of Business Administration in Marketing from University of Colorado, Boulder and a Bachelor of Arts in Psychology from Rutgers University.

SHARE:

[the_ad_placement id="news-sidebar-ad"]

Latest Insights:

New Tools Streamline ERP Tasks, Add Carbon Tracking, and Enhance Predictive Business Insights
Keith Kirkpatrick, Research Director at Futurum, provides his perspective on the news from Epicor Insights 2025, including agentic AI to streamline ERP workflows, carbon tracking in Kinetic, and expansion of predictive insights with Grow AI.
Transformation Initiatives Drive Profitability as Company Posts Revenue Growth
Fernando Montenegro, VP and Practice Lead at Futurum, reviews Kyndryl's Q4 FY2025 earnings. Key highlights: Constant-currency growth, notable rise in pretax income, how 'three-A' initiatives drive results, and strategic tailwinds.
Q1 FY 2025 Results Reflect Resilience in Gross Margin and Record Design Wins in AI, Robotics, and Automotive as New Products Scale
Olivier Blanchard, Research Director at Futurum, examines Lattice’s Q1 FY 2025 earnings, highlighting record design wins across AI, robotics, and automotive, and how new products are paving the way for growth in FY 2026.

Latest Research:

In our latest Research Brief, Hammerspace Tier 0: Unlocking Greater Efficiency in GPU-Driven Computing, The Futurum Group explores how organizations can overcome latency and storage inefficiencies by unlocking stranded NVMe capacity within GPU servers.
In our latest market brief, Enhancing Cyber-Resilience: A Multi-Layered Approach to Data Infrastructure, Protection, and Security, The Futurum Group, in partnership with Lenovo, explores how organizations can design resilient systems that reduce downtime, safeguard critical data, and empower lean IT teams to act swiftly in crisis moments.
In our latest Research Brief, Secure Data Infrastructure in a Post-Quantum Cryptographic World, created in partnership with NetApp, The Futurum Group explores the quantum cybersecurity threat and offers a roadmap to protect enterprise infrastructure through Post-Quantum Cryptography, crypto-agility, and proactive data security strategies.

Book a Demo

Thank you, we received your request, a member of our team will be in contact with you.